Skip to main content

Cascaded Transformer

Cascaded Transformer

Cascade two or more transformers is desired to use for voltages higher than 400 kV. This transformer is subdivided into single units of the weight of the whole unit. Also with this, the transformer cost may be reduced and therefore transport and erection become easier. So that it is found that the cost of insulation for such voltages for a single unit becomes proportional to the square of operating voltage. Figure (2.8) shows a basic scheme for cascading three transformers.

cascaded transformer

A low voltage supply is connected to the primary of the first stage transformer. Therefore a voltage is available across the secondary of this transformer. Now the excitation winding of the first stage feeds the primary winding of the second stage. The number of turns in both windings of the first stage are some. This is the same in the case of the second and third stages.

Now as shown in figure (2.8) the potential of tertiary is fixed to the potential V of the secondary winding. The voltage of 2V is available between the ground and terminal of the secondary of the second stage. Same with the case of the III stage transformer the voltage is 3V. It is to be noted that except for the uppermost transformer, others have three winding transformers. The metal tank construction of the transformer is shown in figure (2.8).

The tank of the stage l transformer is earthed. The tank of stage-II and stage-III transformers have potentials of V and 2V. However, if the high voltage windings are of mid-point potential type, the tanks are held at 0.5V, 1.5V, and 2.5V respectively.

Cascaded Transformer Disadvantages

The main disadvantage of cascading the transfers is that the lower stages of the primaries of the transformers are loaded more as compared with the upper stages.

Popular posts from this blog

RS Aggarwal Aptitude Book PDF Free Download

RS Aggarwal Aptitude Book PDF Free Download RS Agarwal Aptitude Book PDF Free Download: Quantitative Aptitude by R.S Aggarwal is a standout amongst the most inclining books among the hopefuls getting ready for Bank PO, PO, MBA, RBI, IBPS, CAT, SSC, IAS, PSC, Hotel Management, Railway Recruitment Exams, and other aggressive and placement tests. This book is suggested by different specialists in this field. This book covers relatively every theme which is being requested for the focused exams. On the off chance that you are looking to Download RS Aggarwal Quantitative Aptitude PDF's most recent version with the expectation of complimentary then you appear to be at the correct place.    Download PDF  RS Agarwal Aptitude Book PDF Free Download This book covers Problems on Surds and Indices, Simplification, Numbers and Ages, Pipes and Cisterns, Boats and Streams, Problems on Trains, Simple and Compound Interests, Time and Work, Permutations and Combination, Clocks, Odd Man Out, Heights

Comparison between VSI and CSI

Comparison between VSI and CSI In power electronic systems, inverters are an essential component that converts direct current (DC) into alternating current (AC). There are two main types of inverters used in power electronic systems: Voltage Source Inverters (VSI) and Current Source Inverters (CSI). Both have their own unique advantages and disadvantages, and the choice of which to use depends on the specific application and the desired outcome. Comparisons between voltage source inverters and current source inverters are as follows. In voltage source inverters, the input voltage is maintained constant and the amplitude of the output voltage does not depend on the load. However, the waveform of load current, as well as its magnitude, depends upon the nature of load impedance.  In current source inverters (CSI), the input current is constant but adjustable. The amplitude of output current from CSI is freelance of the load. However, the magnitude of output voltage and its undulation outp

Limitations of Terzaghi Theory

Limitations of Terzaghi Theory The value of the coefficient of consolidation has been assumed to be constant.  The distance d of the drainage path cannot be measured accurately in the field. The thickness of the deposit is generally variable, and an average value has to be estimated.  There is sometimes difficulty 1n locating the drainage face, and sometimes thin previous seams that can act as good drainage faces are missed in the boring operations. The equation is based on the assumption that the consolidation is one-dimensional. In the field, the consolidation is generally 3-dimensional. The lateral drainage may have a significant effect on the time rate of consolidation. The initial consolidation and secondary consolidation have been neglected. Sometimes these form an important part of the total consolidation. In actual practice, the pressure distribution may be far from linear or uniform.