Skip to main content

Fleming Left-Hand Rule

It is discovered that at whatever point a current conveying conductor is set inside an attractive field, a power follows up on the conductor, toward a path opposite to both the headings of the current and the attractive field. 

In the figure, it is demonstrated that a segment of a conductor of length L set vertically in a uniform flat attractive field quality H, delivered by two attractive shafts N and S. In the event that I am the present coursing through this conductor, the size of the power follows up on the conductor is, 

Hold out your left hand with the index finger, second finger and thumb at right edge to each other. On the off chance that the forefinger speaks to the bearing of the field and the second finger that of the present, at that point thumb gives the heading of the power. 

While, current courses through a conductor, one attractive field is actuated around it. This can be envisioned by thinking about quantities of shut attractive lines of power around the conductor. The heading of attractive lines of power can be controlled by Maxwell's corkscrew rule or right-hand grasp rule. According to these rules, the course of the attractive lines of power (or transition lines) is clockwise if the current is streaming far from the watcher, that is if the bearing of current through the conductor is internal from the reference plane as appeared in the figure. 

Presently if an even attractive field is connected remotely to the conductor, these two attractive fields i.e. field around the conductor because of current through it and the remotely connected field will communicate with each other. We see in the photo, that the attractive lines of the power of outside attractive field are from N to S post that is from left to right. The attractive lines of the power of outside attractive field and attractive lines of power because of current in the conductor are same way over the conductor, and they are inverse way underneath the conductor. Henceforth there will be bigger quantities of co-directional attractive lines of power over the conductor than that of underneath the conductor. Thus, there will be a bigger convergence of attractive lines of power in a little space over the conductor. As attractive lines of power are never again straight lines, they are under strain like extended elastic groups. Thus, there will be a power which will tend to move the conductor from more thought attractive field to less focused attractive field, that is from show position to downwards. Presently on the off chance that you watch the bearing of current, drive and attractive field in the above clarification, you will find that the headings are as indicated by the Fleming left-hand rule.

We are Make Many Question. For Example...
flemings ||hand roll ||left handed ||left hand rule ||motor effect ||left handed vs right handed ||left hand right hand ||fleming law  ||fleming rule ||flemings left hand rule definition  ||fleming's left hand rule questions  

More Posts


Popular posts from this blog

RS Aggarwal Aptitude Book PDF Free Download

RS Aggarwal Aptitude Book PDF Free Download RS Agarwal Aptitude Book PDF Free Download: Quantitative Aptitude by R.S Aggarwal is a standout amongst the most inclining books among the hopefuls getting ready for Bank PO, PO, MBA, RBI, IBPS, CAT, SSC, IAS, PSC, Hotel Management, Railway Recruitment Exams, and other aggressive and placement tests. This book is suggested by different specialists in this field. This book covers relatively every theme which is being requested for the focused exams. On the off chance that you are looking to Download RS Aggarwal Quantitative Aptitude PDF's most recent version with the expectation of complimentary then you appear to be at the correct place.    Download PDF  RS Agarwal Aptitude Book PDF Free Download This book covers Problems on Surds and Indices, Simplification, Numbers and Ages, Pipes and Cisterns, Boats and Streams, Problems on Trains, Simple and Compound Interests, Time and Work, Permutations and Combination, Clocks, Odd Man Out, Heights

Limitations of Terzaghi Theory

Limitations of Terzaghi Theory The value of the coefficient of consolidation has been assumed to be constant.  The distance d of the drainage path cannot be measured accurately in the field. The thickness of the deposit is generally variable, and an average value has to be estimated.  There is sometimes difficulty 1n locating the drainage face, and sometimes thin previous seams that can act as good drainage faces are missed in the boring operations. The equation is based on the assumption that the consolidation is one-dimensional. In the field, the consolidation is generally 3-dimensional. The lateral drainage may have a significant effect on the time rate of consolidation. The initial consolidation and secondary consolidation have been neglected. Sometimes these form an important part of the total consolidation. In actual practice, the pressure distribution may be far from linear or uniform.

Comparison between VSI and CSI

Comparison between VSI and CSI In power electronic systems, inverters are an essential component that converts direct current (DC) into alternating current (AC). There are two main types of inverters used in power electronic systems: Voltage Source Inverters (VSI) and Current Source Inverters (CSI). Both have their own unique advantages and disadvantages, and the choice of which to use depends on the specific application and the desired outcome. Comparisons between voltage source inverters and current source inverters are as follows. In voltage source inverters, the input voltage is maintained constant and the amplitude of the output voltage does not depend on the load. However, the waveform of load current, as well as its magnitude, depends upon the nature of load impedance.  In current source inverters (CSI), the input current is constant but adjustable. The amplitude of output current from CSI is freelance of the load. However, the magnitude of output voltage and its undulation outp