Skip to main content

Muller-Breslau principle

Muller-Breslau principle

Muller-Breslau principle is the most essential tool in obtaining influence lines for statically determinate us well u statically indeterminate structures. The method is based on the concept of the influence line as a deflection curve. The Muller-Breslau principle may be stated as follows.

If an internal stress component or a reaction component is considered to act through some small distance and thereby deflect or displace a structure, the curve of 1 the deflected or displaced structure will be, to some scale, the influence line for the stressor reaction component.

Muller-Breslau principle is applicable 

1. Statically determinate beams
2. Statically indeterminate beams

The Muller-Breslau principle influence theorem for ‘ statically determinate beams may be stated as follows:

The influence line for an assigned function of a statically determinate beam may be obtained by removing ‘ the restraint offered by that function and introducing a directly related generalized unit displacement at the location! and in the direction of the process.

Muller-Breslau principle

Muller Breslau principle of indeterminate structures

I.L.  for Reaction Ra and Rb

The I.L. for reaction (Ra) at A can be found by lifting the support beam by a unit distance, as shown in figure (b). The deflected shape gives the I.L. for Ra. Similarly reaction RB can be found out [figure (c)].

I.L. for S.F. at C

We know that S.F. acts on both ‘sides of the section and is represented by hence cutting the beam at c into two parts AC and CB. The free-body diagram of the two parts is shown in the figure. Let the beam go through rigid body motions ‘ of parts AC and CB, so that the total movement C1C2 = unity. The deflected shape will then give the influence line for the sheer force at C. Values of the ordinates will be as shown in figure (d).

LL. for B.M. at C

For obtaining I.L. for Mc introduce a hinge at C, and let the system go through rigid-body motions of AC and C B as shown in the figure. The deflected shape will thus be the influence tine for bending moment at C, various values of different elements are as shown in figure (e).

Popular posts from this blog

Limitations of Terzaghi Theory

Limitations of Terzaghi Theory The value of the coefficient of consolidation has been assumed to be constant.  The distance d of the drainage path cannot be measured accurately in the field. The thickness of the deposit is generally variable, and an average value has to be estimated.  There is sometimes difficulty 1n locating the drainage face, and sometimes thin previous seams that can act as good drainage faces are missed in the boring operations. The equation is based on the assumption that the consolidation is one-dimensional. In the field, the consolidation is generally 3-dimensional. The lateral drainage may have a significant effect on the time rate of consolidation. The initial consolidation and secondary consolidation have been neglected. Sometimes these form an important part of the total consolidation. In actual practice, the pressure distribution may be far from linear or uniform.

Streamer Theory of Breakdown in Gases

Streamer Theory of Breakdown in Gases According to the Townsend theory firstly, current growth occurs as a result of the ionization process only. But in practice, breakdown voltages were found to depend on the gas pressure and the geometry of the gap. Second chances time lags of the order of 10-5 s, but practically it was observed to occur at a very short time of 10-8 s. Also, the Townsend mechanism predicts a very diffused form of discharge, that actually discharges were found to be filamentary and irregular. Townsend's mechanism failed to explain all these observed phenomena and as a result, The Streamer theory was proposed. The theory predicts the development of a spark discharge directly from a single avalanche in which the space charge developed by the avalanche itself is said to transform the avalanche into a plasma steamer. In Fig 1.7, a single electron starting at the cathode by ionization builds up an avalanche that crosses the gap. The electrons in the a

Price Guard Wire Method

Price Guard Wire Method Some form of  Price Guard Wire Method  is generally used to eliminate the errors caused by leakage currents over insulation. Fig. 3.14 illustrates the operation of This Method. In fig 3.14(a), a high resistance mounted on a piece of insulating material is measured by the ammeter voltmeter method. The micro-ammeter measures the sum of the current through the resistor (IR) and the current through the leakage path around the resistor. The measured value of resistance computed from the readings indicated on the voltmeter and the microammeter, will not be a true value but will be in error.   Figure 3.14 Application of  guard  circuit for measurement of high resistance In fig, 3.14 (b), the  guard  terminal has been added to the resistance terminal block. The  guard  terminal surrounds the resistance terminal entirely and is connected to the battery side of the micro-ammeter. The leakage current IL now